Molecular analysis of alkaloid metabolism in AABB v. aabb genotype Nicotiana tabacum in response to wounding of aerial tissues and methyl jasmonate treatment of cultured roots

Author:

Cane Karen A.,Mayer Melinda,Lidgett Angela J.,Michael Anthony J.,Hamill John D.

Abstract

Synthesis of the wound-inducible alkaloid, nicotine, in roots of the allotetraploid species Nicotiana tabacum L. is strongly influenced by the presence of two non-allelic genes, A and B. Together, these loci affect baseline transcript levels of genes dedicated to secondary metabolism (e.g. PMT and A622) as well as genes with roles in separate areas of primary metabolism (e.g. ODC, ADC, SAMS — polyamines; QPT — pyridine nucleotide cycle). Experiments comparing high alkaloid variety NC 95 (AABB genotype) and near-isogenic low alkaloid N. tabacum variety LAFC 53 (aabb genotype) indicate that together, mutations in the A and B loci diminish, but do not ablate, the propensity of roots to increase transcript levels of genes involved in alkaloid metabolism after damage to aerial tissues or direct treatment with the wound hormone, methyl jasmonate. Accordingly, roots of aabb genotype can increase their nicotine content somewhat in response to these treatments. Additionally, we show that transcript levels of genes associated with polyamine metabolism (ODC, ADC, SamDC, SAMS and SS) but not alkaloid synthesis (PMT, QPT, A622) are elevated in leaves of N. tabacum in response to wounding. Moreover, respective increases in transcript levels of each gene are similar in wounded leaves of NC 95 and LAFC 53, suggesting that these increases are not controlled by combined action of genes encoded by the A and B loci. Further detailed analysis of wounded leaves of AABB genotype indicates that although transcript levels of these genes of polyamine metabolism and associated enzyme activities for ODC, ADC and SamDC, are markedly increased in leaves in response to wounding, putrescine levels remain unaltered whilst spermidine and spermine levels are reduced to 50–60% of controls levels, when analysed up to 6 h post-wounding. These observations may indicate that any wound-induced increases in polyamine biosynthesis that do occur in leaf cells during this time frame are consumed by metabolic reactions involved in repair and / or strengthening of wounded leaf tissues.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3