Hydrogen-rich water-alleviated ultraviolet-B-triggered oxidative damage is partially associated with the manipulation of the metabolism of (iso)flavonoids and antioxidant defence in Medicago sativa

Author:

Xie Yanjie,Zhang Wei,Duan Xingliang,Dai Chen,Zhang Yihua,Cui Weiti,Wang Ren,Shen Wenbiao

Abstract

External administration of hydrogen gas (H2) benefits plants from multiple environmental stimuli. However, the physiological significance and molecular mechanism of H2 in ultraviolet-B (UVB) irradiation are largely unexplored. Here, the biological function of H2 in the regulation of plant UVB-tolerance was investigated by using hydrogen-rich water (HRW). Results showed that the exposure of alfalfa seedlings to UVB irradiation increased endogenous H2 production. Pretreatment with HRW mimicked the UVB-induced endogenous H2 production. Corresponding UVB-triggered toxic symptoms, in terms of lipid peroxidation and overproduction of reactive oxygen species (ROS), as well as the subsequent growth inhibition, were markedly mitigated. Metabolic profiling analysis by using ultra performance liquid chromatography-mass spectrometric (UPLC-MS), identified 40 (iso)flavonoids in UVB-treated alfalfa plants, with 22 kinds was increased by HRW. These changes resulted in the alternation of (iso)flavonoids profile, with the effective promotion of isoflavone and flavanone subfamilies in particular. These compounds included afromosin, afromosin 7-O-β-D-glucoside-malonate, daidzein, formononetin 7-O-β-D-glucoside-6ʹʹ-O-malonate, garbanzol, matteucin and naringenin. In vitro tests further showed that the HRW-modulated (iso)flavonoids profile upon UVB stress possessed advanced ROS-quenching and antioxidant capacities under our experimental conditions. Meanwhile, UVB-triggered upregulation in the transcription levels of (iso)flavonoids biosynthetic-related genes were substantially strengthened by HRW. The activities and related transcripts of representative antioxidant enzymes were also induced. Taken together, our findings indicate that HRW confers tolerance to UVB-induced oxidative damage partially by the manipulation of (iso)flavonoids metabolism and antioxidant defence in Medicago sativa L.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3