Author:
Sumayo Marilyn S.,Son Jin-Soo,Ghim Sa-Youl
Abstract
Phenylacetic acid (PAA) was evaluated for its capability to promote plant growth and induce systemic resistance in tobacco (Nicotianum tabacum L cv. Xanthi) against the bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum (PCC). Exogenous application of PAA influenced root formation, the activities of defence-related enzymes and the expression of defence and growth-related genes. Increased formation of lateral roots can be observed in tobacco treated with higher PAA concentrations. The highest elicitation of induced systemic resistance (ISR) was found in plants treated with 0.5 mM PAA, where the phytotoxic effect was minimal. The activities of the defence enzymes phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphnenoloxidase (PPO) were modulated upon treatment with different PAA concentrations. Reverse transcription–PCR analyses showed that 0.5 mM PAA modulated the expression of the growth-related genes NtEXP2 and NtEXP6, and the defence-related genes Coi1, NPR1, PR-1a and PR-1b. These results showed that different concentrations of PAA can elicit different responses and effects on tobacco growth and resistance. This study presents the important role of PAA not only on plant growth but also for plant immunity against phytopathogens.
Subject
Plant Science,Agronomy and Crop Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献