Abstract
Chromium (Cr) is a serious environmental contaminant that drastically limited the crop yields. Nitric oxide (NO) and spermine (Spm) portrayal significance in improving the plant tolerance against abiotic stresses. Therefore, we investigate the protective efficacy of seed priming with NO (100 μM) and/or Spm (0.01 mM) in minimising the Cr-induced toxic effects in rice (Oryza sativa L.) plants. Our outcomes revealed that Cr alone treatments (100 μM) notably reduced the seed germination rate, plant growth, photosynthetic apparatus, nutrients uptake and antioxidant defence system, but extra generation of reactive oxygen species (ROS). Interestingly, the combine applications of NO and Spm significantly reversed the Cr-induced toxic effects by reducing the Cr-accumulation, maintaining the nutrient balance, improving the germination indices, levels of photosynthetic pigments (chl a by 24.6%, chl b by 36.3%, chl (a + b) by 57.2% and carotenoids by 79.4%), PSII, photosynthesis gas exchange parameters and total soluble sugar (74.9%) by improving antioxidative enzyme activities. As a result, NO + Spm lowered the accumulation of oxidative markers (H2O2 by 93.9/70.4%, O2˙− by 86.3/69.9% and MDA by 97.2/73.7% in leaves/roots), electrolyte leakage (71.4% in leaves) and improved the plant growth traits. Based on these findings, it can be concluded that NO triggers Spm to minimise the Cr-accumulation and its adverse effects on rice plants. Additionally, combined treatments (NO + Spm) were more effective in minimising the Cr-induced toxic effects in comparison to NO and Spm alone treatments. Thus, co-exposure of NO and Spm may be utilised to boost rice tolerance under Cr stress conditions.
Subject
Plant Science,Agronomy and Crop Science
Reference89 articles.
1. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower ( L.).;Environmental Science and Pollution Research,2017
2. Beryllium stress-induced modifications in antioxidant machinery and plant ultrastructure in the seedlings of black and yellow seeded oilseed rape.;BioMed Research International,2018
3. Differential cobalt-induced effects on plant growth, ultrastructural modifications, and antioxidative response among four (L.) cultivars.;International Journal of Environmental Science and Technology,2018
4. Insights on the responses of cultivars against the cobalt-stress as revealed by carbon assimilation, anatomical changes and secondary metabolites.;Environmental and Experimental Botany,2018
5. Optimising photosynthesis for environmental fitness.;Functional Plant Biology,2020
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献