Author:
Liu Hui,Zhao Huimin,Chen Shuo,Quan Xie,Zhang Yaobin
Abstract
Environmental context Chlorinated organic compounds are ubiquitous in the environment, and cause concern owing to their persistence and toxicity to organisms. In addition to anthropogenic sources, photochemical processes in saline waters could also yield chlorinated organic compounds. The present paper investigates the effects of iron, pH, nitrate and dissolved organic matter on the photochlorination of bisphenol A, a widely distributed endocrine disrupting chemical. Abstract Effects of several key influencing factors of environmental photochemistry, including iron, nitrate and dissolved organic matter (DOM), on the photochlorination of bisphenol A (BPA) were investigated. Iron promoted the formation of chlorinated BPA, but the rate decreased with increasing pH. This result was consistent with the results of laser flash photolysis, which showed that high pH decreased the formation of reactive chlorine species (chlorine radical, Cl•/Cl2•–). Nitrate ion and citric acid, which was selected as an analogue of DOM, inhibited the chlorination of BPA separately. The results presented in this paper are helpful to get some idea of the degree of photochemical chlorination in aqueous environment.
Subject
Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献