Does habitat structure influence capture probabilities? A study of reptiles in a eucalypt forest

Author:

Craig Michael D.,Grigg Andrew H.,Garkaklis Mark J.,Hobbs Richard J.,Grant Carl D.,Fleming Patricia A.,Hardy Giles E. St J.

Abstract

Pitfall traps are commonly used to examine differences in reptile communities among habitat types and disturbance regimes that differ in structure. However, capture rates and probabilities may be influenced by habitat structure, which invalidates comparisons of relative abundance among habitat types. To assess whether pitfall traps provide accurate reflections of density and whether habitat structure affects capture probabilities, we trapped at six sites in various jarrah-forest habitat types in south-western Australia, then intensively searched 150-m2 total-removal plots around each pitfall grid to obtain absolute densities of reptiles. Pitfall captures were significantly correlated with numbers on total-removal plots for Hemiergis initialis and Lerista distinguenda, indicating that pitfall traps provided accurate reflections of density for these species. Capture probabilities of H. initialis and L. distinguenda and all reptiles combined showed no significant correlations with any structural variables, indicating that capture probabilities were consistent across sites. We conclude that trapping provided accurate estimates of relative abundance for some species and that capture probabilities were not influenced by vegetation structure. Because many studies use trapping to estimate abundances among habitat types, we encourage researchers to investigate how vegetation structure influences capture probabilities, so that general patterns can be determined; we also suggest improvements for any future studies.

Publisher

CSIRO Publishing

Subject

Management, Monitoring, Policy and Law,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3