Cerium oxide nanoparticles (CeO2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes

Author:

Ariu F.,Bogliolo L.,Pinna A.,Malfatti L.,Innocenzi P.,Falchi L.,Bebbere D.,Ledda S.

Abstract

The present study investigated whether supplementation with different doses of cerium dioxide nanoparticles (CeO2 NPs) during in vitro maturation (IVM) of prepubertal ovine oocytes influenced their embryonic development in vitro. Cumulus–oocyte complexes derived from the ovaries of slaughtered prepubertal sheep underwent IVM with CeO2NPs (0, 44, 88 or 220 µg mL–1). Matured oocytes were fertilised in vitro and zygotes were cultured for 7 days. The results demonstrated that CeO2NPs were internalised in the cumulus cells and not in the oocyte. The treatment with CeO2NPs did not affect nuclear maturation or intracellular levels of reactive oxygen species of the oocytes. The percentage of oocytes with regular chromatin configuration and cytoskeleton structures when treated with 44 µg mL–1 CeO2NPs was similar to oocytes matured in the absence of CeO2NPs and significantly higher than those treated with 88 or 220 µg mL–1 CeO2NPs. The relative quantification of transcripts in the cumulus cells of oocytes matured with 44 µg mL–1 CeO2NPs showed a statistically lower mRNA abundance of BCL2-associated X protein (BAX), B-cell CLL/lymphoma 2 (BCL2) and superoxide dismutase 1 (SOD1) compared with the 0 µg mL–1 CeO2 NPs group. A concentration of 44 µg mL–1 CeO2NPs significantly increased the blastocyst yield and their total, inner cell mass and trophectoderm cell numbers, compared with the 0 and 220 µg mL–1 groups. A low concentration of CeO2NPs in the maturation medium enhanced in vitro embryo production of prepubertal ovine oocytes.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3