Biochar enriched compost elevates mungbean (

Author:

Mithu Md. Mehedi Hasan,Mia ShamimORCID,Suhi Ayesa Akter,Tahura Saraban,Biswas Purnendu,Kader Md. Abdul,Kassim Susilawati,Makino Tomoyuki

Abstract

Context Organic amendments including biochar can improve crop production under salt stress. However, it is still not clear whether biochar enriched compost would enhance legume performance under salt stress after fresh application and in succeeding crops. Aim The aim of the study was to examine the effect of biochar enriched compost in reducing the salinity stress after fresh application at increasing rates and in the succeeding crop. Methods In a pot trial, biochar–compost was applied at four different rates (0, 1, 2, and 3%) while mungbean was grown under five different salt stress conditions (0, 2, 4, 8, and 12 dS m−1). In the field trial, the residual effect of different organic amendments (control, compost, cow urine, compost with cow urine, biochar–compost, and biochar–compost with cow urine) was evaluated under three different salt stress conditions (0, 3, and 6 dS m−1). Soil properties, plant performance, and nutrient uptake were determined. Key Results Results revealed a significant biochar × salt treatment interaction in our pot culture. Biochar–compost application can minimise salt effects at a higher application rate resulting in better plant performance; however, these effects are minimal when salt was added at higher rates. We also observed a significant residual effect of biochar compost on biomass production (51.03%), seed yield (79.48%), and K+ uptake (77.95%) than the control treatment. We believe that biochar–compost buffered Na+ while improved plant water, and nutrient availability and uptake. In addition, biochar–compost might have increased nitrogen acquisition through enhanced biological nitrogen fixation. Conclusions Biochar enriched compost enhances the yield of legume grown under salt stress. Implications Our results suggest that biochar–compost can be one of the sustainable means for alleviating soil salinity.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3