Epicuticular-wax removal influences gas exchange and water relations in the leaves of an exotic and native species from a Brazilian semiarid region under induced drought stress

Author:

Figueiredo Karla V.,Oliveira Marciel T.,Oliveira Antônio Fernando M.,Silva Gabriela C.,Santos Mauro G.

Abstract

The primary physiological function of the leaf cuticle is to limit water loss. Thus, in the present study, we examined the hypothesis that variation in the quality and content of the epicuticular wax between different species influences leaf gas exchange. Plants of Jatropha mollissima (Pohl) Bailon, a Brazilian semiarid native, and Jatropha curcas L. (Euphorbiaceae), an exotic species, were subjected to a water deficit in the presence or absence of epicuticular wax. Plants were grown in 10-L pots under greenhouse conditions. The relative water content, gas-exchange parameters and primary carbon metabolism were measured at 21 days after the irrigation was reduced to induce a water deficit. The well-watered plants of both species showed recovery of gas exchange days after the removal of epicuticular wax. Furthermore, under drought, a gradual increase in transpiration rates was observed only in the leaves of native species without wax, although the stomatal conductance did not differ between the species. High relative water content was maintained, except in the leaves under drought and without wax from Day 13 onward, when compared with all other treatments. The wax production was induced in both species under water shortage. Nevertheless, the native species showed a higher content of long-chain n-alkanes. In fact, the barrier to water vapour under reduced stomatal conductance was highest in the native species.

Publisher

CSIRO Publishing

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3