Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research

Author:

Gifford Roger M.

Abstract

Plant respiratory regulation is too complex for a mechanistic representation in current terrestrial productivity models for carbon accounting and global change research. Accordingly, simpler approaches that attempt to capture the essence of respiration are commonly adopted. Several approaches have been used in the literature: respiration may be embedded implicitly in growth algorithms; assumed values for specific respiration rates may be adopted; respiration may be calculated in terms of growth and maintenance components; conservatism in the ratio of respiration to photosynthesis (R : P) may be assumed; or a more complex process or residual approach may be adopted. Review of this literature suggests that the assumption of conservative R : P ratio is an effective and practicable approach in the context of C-cycle modelling for global change research and documentation, requiring minimal ecosystem-specific data on respiration.Some long-standing controversies in respiration are now becoming resolved. The apparently wasteful process of cyanide-resistant respiration by the alternative oxidase may not be wasteful, as it is thought to be involved in protecting the plant from 'reactive oxygen species'. It is now clear that short-term respiratory response coefficients of plants (e.g. the Q10) do not predict their long-term temperature response. A new experimental approach suggests that leaf respiration is not suppressed by light as previously thought. Careful experiments, taking account of several proposed measurement artefacts, indicate that plant respiration is not suppressed by elevated CO2 concentration in a short-term reversible way.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 334 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3