Removal of toxic arsenic(iii) from an old endemic black-foot disease groundwater by oxidative electrosorption

Author:

Chen P.-A.,Peng C.-Y.,Liu S.-H.,Wang H. PaulORCID

Abstract

Environmental context Naturally occurring arsenic was the likely cause of endemic black foot disease in groundwaters in Taiwan, and levels still exceed Taiwan EPA water quality standards. A method for the clean-up of these groundwaters that is both feasible and environmentally friendly is urgently needed. Oxidation of As(III) as H3AsO3 to the less toxic As(V)− and removal of As in groundwater was performed quantitatively by electrosorption using materials derived from agricultural wastes; this shows that this method has the potential to be a novel, green remediation method. Rationale Naturally occurring arsenic in the groundwater caused black-foot disease (BFD) in the 1950s on the southwest seashore of Taiwan. Recently, we found that the concentration of arsenic in groundwater taken from currently sealed wells in areas previously affected by BFD remained higher than the Taiwan (EPA) water quality standard. Although clean tap water is available in that area, removal of arsenic from the groundwater is of great importance to expand possible utilisation. Methodology Removal of arsenic from two old endemic BFD groundwaters with activated carbon (AC) electrodes recycled from agricultural wastes by electrosorption using capacitive deionisation (CDI) processes was studied. A better understanding of arsenic electrochemistry involved in electrosorption was investigated by in situ X-ray absorption near-edge structure spectroscopy. Results Arsenic removal efficiencies (61–93%) remained high across concentrations (5 and 196 mg/L). A high oxidation rate constant (0.93 h−1) for As(III)0 to As(V)− was found, allowing the electrosorption of As(V)− onto the meso- and micro-pores of the AC CDI electrodes with rate constants of 0.021 and 0.0013 h−1, respectively. Removal of arsenic from contaminated groundwater for drinking water was achieved with six CDI reactors in series. Moreover, in the presence of other ions (such as Na+, Mg2+ and Ca2+), 60–73% of As(III)0 and As(V)− ions were removed from the groundwaters by electrosorption. Discussion We have developed an engineering-feasible method for converting As(III)0 to less toxic As(V)−, enabling its removal by electrosorption, which demonstrates the feasibility for green remediation of BFD waters as well as other arsenic-contaminated groundwaters.

Funder

Taiwan Ministry of Science and Technology

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3