Agronomic soil tests can be used to estimate dissolved reactive phosphorus loss

Author:

Weaver DavidORCID,Summers RobertORCID,Neuhaus Andreas

Abstract

Context Phosphorus (P) use in agriculture can lead to eutrophication. Agronomic soil tests such as Colwell P and P buffering index (PBI) define critical soil P levels for pasture production. These tests have potential for re-use as environmental risk indicators of dissolved reactive P (DRP) loss from paddocks but are constrained because a 0–10 cm sample does not necessarily align with the dominant hydrological loss pathways of runoff or leaching. Aims To identify influences on the benchmark environmental measure of DRP (CaCl2-extractable P or CaCl2-P) by agronomic-based measures such as PBI, Colwell P and depth, and Colwell P to PBI ratio (P environmental risk index; PERI). To estimate CaCl2-P at any depth from a 0–10 cm sample, and the potential for change in DRP loss risk through the adoption of evidence-based fertiliser management based on soil testing. Methods Archives of 692 0–10-cm soil samples, along with 88 sites sampled at 0–10 cm and 0–1, 1–2, 2–5, 5–10, 10–20, and 20–30 cm were analysed for Colwell P, PBI, CaCl2-P, PERI, and P fertility index (PFI). Derived relationships between CaCl2-P and Colwell P for different PBI were applied to 30 981 0–10-cm samples to estimate the potential for DRP reduction resulting from the adoption of evidence-based fertiliser management. Key results CaCl2-P, Colwell P, PERI, and PFI decreased with depth, with an associated increase in DRP loss risk from surface soil. The CaCl2-P decreased with increasing PBI. The CaCl2-P, Colwell P, PERI, and PFI could be estimated at any depth from a 0–10 cm sample, with r2 > 0.77. The CaCl2-P was estimable from PERI, and soils with low PBI or with high PFI had high DRP loss risk. The CaCl2-P was positively correlated with Colwell P, with the slope decreasing with increasing PBI and becoming invariant when PBI > 100. When applied to the current soil Colwell P and estimated current CaCl2-P and compared to CaCl2-P at the critical Colwell P for different relative yields (RYs), DRP loss risk could be reduced by 24% for a RY target of 95%, and 59% for a RY target of 80%. Conclusions Because current Colwell P levels in soils exceed critical values, DRP loss risk can be substantially reduced by adopting evidence-based fertiliser management with little or no loss of utilised pasture. Implications Fertiliser management based on evidence of P requirements determined from soil testing has a significant role in reducing DRP loss risk.

Funder

Royalties for Regions

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Reference86 articles.

1. ANZECC and ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Available at

2. A brief history of phosphorus: from the philosopher’s stone to nutrient recovery and reuse.;Chemosphere,2011

3. A phosphate sorption index for soils.;Journal of Soil Science,1971

4. Soil phosphate chemistry and the P-sparing effect of previous phosphate applications.;Plant and Soil,2015

5. Evaluation of the phosphorus index in watersheds at the regional scale.;Journal of Environmental Quality,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3