-Acetylcysteine improves oocyte quality through modulating the Nrf2 signaling pathway to ameliorate oxidative stress caused by repeated controlled ovarian hyperstimulation

Author:

Fan LijieORCID,Guan Fengli,Ma Yucong,Zhang Yu,Li Li,Sun Ying,Cao Can,Du Huilan,He Ming

Abstract

Context N-acetyl-cysteine (NAC) is a potent antioxidant that can be used for many gynecological diseases such as polycystic ovary syndrome and endometriosis. Controlled ovarian hyperstimulation (COH) is a critical step in infertility treatment. Our previous clinical studies have shown that repeated COH led to oxidative stress in follicle fluid and ovarian granulosa cells. Aims In this study, we investigated whether NAC could inhibit oxidative stress in mice caused by repeated COH and improve the mitochondrial function of oocytes. Methods Female Institute of Cancer Research (ICR) mice were randomly assigned into three groups: normal group, model (repeated COH) group, NAC group. We examined the morphology, number and quality of mitochondria. The mechanism of regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) by NAC to ameliorate oxidative stress was also investigated. Key results Repeated COH caused oxidative damage in ovaries and oocytes and decreased oocyte quality, while NAC prevented oxidative damage and increased oocyte mitochondrial function. In in vitro experiments, it was verified that NAC can promote the nuclear translocation of Nrf2, which transcriptionally activates the expression of superoxide dismutase and glutathione peroxidase, which removed excessive reactive oxygen species that causes mitochondria damage. Conclusions The results suggest that NAC raises mitochondrial function in oocytes and improves oocyte quality through decreasing oxidative stress in mice with repeated COH. The underlying mechanism is related to the regulation of the Nrf2 signaling pathway. Implication This study provides a meaningful foundation for the future clinical application of NAC during repeated COH.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3