Mercury partitioning in oil and gas production systems - design optimisation and risk mitigation through advanced simulation

Author:

Crafts Peter,Williams Mark

Abstract

Operators are increasingly producing fields with challenging operational environments, including fluids with higher concentrations of mercury. Mercury is harmful to personnel and the environment and contaminates most of the production plant that it contacts through physical adsorption, potentially creating hazardous wastes through the operating lifetime and subsequent decommissioning. The assessment of mercury removal locations requires careful consideration at the design stage. Mercury exists in various chemical forms that readily partition between streams in the production process. Mercury partitioning simulations are an essential step in managing the operational, safety, environmental, production and decommissioning risks associated with mercury. Accurate assessment of mercury species during welltests is an essential step towards successful mercury risk management; providing the basis to model partitioning into vapour, liquid, aqueous and solid phases through production. Adsorption modelling is also necessary to understanding the propagation of mercury through offshore and onshore systems, identifying release points to the environment. Only once form, flow and accumulation locations are understood, can the adequate design of mercury removal facilities be confidently completed. Experience in thermodynamic modelling and verification through laboratory research and plant analysis is required to fully understand modelling limitations, capabilities and applications to proposed or existing infrastructure. Changes in inlet stream conditions may affect propagation of mercury through an operating plant thus the influence of predicted conditions through the full life of the field should be considered.

Publisher

CSIRO Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3