High floral bud abscission and lack of open flower abscission in Dendrobium cv. Miss Teen: rapid reduction of ethylene sensitivity in the abscission zone

Author:

Bunya-atichart Kanokpon,Ketsa Saichol,van Doorn Wouter G.

Abstract

We studied the abscission of floral buds and open flowers in cut Dendrobium inflorescences. Abscission of floral buds was high and sensitive to ethylene in all cultivars studied. Many open flowers abscised in most cultivars, but cv. Willie exhibited only small amount of floral fall and cv. Miss Teen none. Applied ethylene (0.4 μL L–1 for 24 h at 27°C) greatly hastened abscission of open flowers in most cultivars, but had only a small effect in cv. Willie and no effect in cv. Miss Teen. Flower fall, if it occurred, was completely inhibited by 1-methylcyclopropene (1-MCP), showing that it was regulated by endogenous ethylene. Ethylene production from the abscission zones was low in all cultivars studied. In cv. Miss Teen the abscission zone changed from highly ethylene sensitive to completely insensitive in ~30 h, coinciding with floral opening. Removal of the floral buds somewhat reduced abscission in open flowers, but the lack of open flower abscission in cv. Miss Teen could not be explained by higher bud fall. The ovary did not grow in the (unpollinated) flowers, showing that lack of abscission in cvv. Willie and Miss Teen was not due to parthenocarpy. Flower removal in cv. Miss Teen had no effect on ethylene sensitivity of the abscission of the remaining pedicel. However, removal of the distal 2 cm of the 3-cm-long pedicels dramatically increased ethylene sensitivity. This suggests that the pedicel is important for the low ethylene insensitivity of abscission, in this cultivar. It is concluded that the abscission zones in the cvv. Willie and Miss Teen, in contrast with the other cultivars investigated, became rapidly insensitive to ethylene at the time of flower opening. At least part of the ethylene sensitivity in Miss Teen seems to be due to a factor in the pedicel.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3