The comparative significance and utility of the Freundlich and Langmuir parameters for characterizing sorption and plant availability of phosphate in soils

Author:

Holford ICR

Abstract

In studies using 62 Australian and English soils, the two parameters of the Freundlich sorption equation were compared with phosphate sorption capacity, calculated from the Langmuir 'two-surface' equation, and sorptivity and affinity indices calculated from the simple Langmuir equation applied to an isotherm concentration range of 0-5�g phosphorus/ml. The Freundlich extensive parameter was most highly correlated with sorptivity, and to a decreasing extent with sorption capacity and affinity. It appears to be fundamentally a sorptivity index which reflects the sorption capacity more than the affinity component of sorption, although greatly underestimating sorption capacity. The reciprocal of the Freundlich exponent proved to be an affinity parameter and was most useful in this role on soils of similar sorption capacity. However, conflicting results on different groups of soils showed that this parameter was less distinctive in its role than the others. Studies on two different groups of soils showed that the sorptivity and affinity parameters from the Langmuir equation accounted for more of the variance in plant uptake of labile phosphate than the Freundlich parameters.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3