Increased C-gain by an endemic Australian pasture grass at elevated atmospheric CO2 concentration when supplied with non-labile inorganic phosphorus

Author:

Barrett Damian J.,Gifford Roger M.

Abstract

Limited phosphorus (P) availability in Australia's highly weathered soils may constrain an increase in terrestrial net primary productivity (NPP) with the globally increasing atmospheric CO 2 concentration. We examined whether an Australian temperate pasture grass (Danthonia richardsonii) grown in sand culture and supplied solely with virtually insoluble Al- and Fe-phosphate was able to increase C-gain when exposed to elevated (731 µmol mol −1 ) compared with ambient (379 µmol mol −1 ) CO 2 concentrations. When supplied with 8 mg kg −1 insoluble P concentration, total citrate efflux by root systems (µmol h −1 ), plant P uptake, shoot photosynthesis rates and plant mass were all significantly greater at elevated than at ambient CO 2 after a growth period of between 55 and 63 days. In this treatment, although the P concentration of the rooting medium limited growth at ambient CO 2 , elevated CO 2 increased P-uptake from the non-labile source, increased photosynthesis rates per unit shoot soluble-P and increased plant mass. At P concentrations lower than 8 mg kg −1 , plant mass, specific citrate efflux and maximum leaf carboxylation rates were limited by the amount of P available in the rooting medium and no CO 2 effect was observed. In all treatments, carbon supply did not appear to limit citrate efflux. Where an increase in P uptake at elevated CO 2 was achieved, it was due to an increase in root mass (indicative of a potentially larger soil volume explored) rather than to increased specific rates of citrate efflux. Above 8 mg kg −1 , the supplied P concentration was sufficient that minimal rates of specific citrate efflux alone solubilised enough P for growth and a strong CO 2 effect on plant mass, photosynthesis and P uptake was observed.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3