Soil properties as predictors of yield response of clover (Trifolium subterraneum L.) to added P in soils of varying P sorption capacity

Author:

Brennan R. F.,Bolland M. D. A.

Abstract

Thirty-five unfertilised soils collected in south-western Australia were used to measure the effect of soil properties on (i) shoot yield responses of 50-day-old clover (Trifolium subterraneum L. cv. Nungarin) plants to applied phosphorus (P), and (ii) extractability of bicarbonate soil test P (slope of the linear relationship between Colwell P and the amount of P applied). Data for the relationship between shoot yield and the amount of P applied were fitted to a rescaled Mitscherlich equation to calculate the amount of P required to produce 50% and 90% of the maximum yield (P50% and P90%) and determine the curvature (c) and n coefficients of the equation. When the value of n is 1.00, the response curve is exponential, and as the value of n increases above 1.00 the response curve becomes more sigmoidal. The c, n, P50%, P90%, and extractability values were related to properties of the 35 soils.There was a significant (P < 0.05) trend for the values of c and extractability to decrease as the capacity of the soil to sorb P increased. Consequently, as the soil sorbed more P, the trend was that (1) more P needed to be applied to produce the same yield, so both P50% and P90% tended to significantly (P < 0.05) increase; (2) shoot yield responses to applied P became more sigmoidal so the value of the n coefficient tended to significantly (P < 0.05) increase; (3) more P needed to be applied to a soil to produce the same soil test P value; and (4) larger soil test P values were needed to produce the same yield. No single soil property adequately predicted P50%, P90%, extractability, c, or n. Stepwise multiple regression indicated that (1) clay content and P buffer capacity (PBC) of soil together accounted for 48% of the variation in P50%, 56% of the variation in P90%, and 52% of the variation in c; (2) PBC and soil pH together accounted for 17% of the variation in n; and (3) PBC, percentage clay and percentage organic carbon content of soil together accounted for 68% of the variation in extractability.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3