1. [1] Amiraliyev, G.M. and Mamedov, Y.D., “Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations”, Tr. J. of Math., 19(1995):207-222, (1995). Google scholar.[2] Amiraliyev, G.M., “Difference method for a singularly perturbed initial value problem”, Turkish Journal of Mathematics, 22: 283-294, (1998). Google scholar.[3] Amiraliyev, G.M. and Çakır, M., “A uniformily convergent difference scheme for singularly perturbed problem with convective term and zeroth order reduced equation”, International Journal of Applied Mathematics, 2(12): 1407-1419, (2000). Google scholar.[4] Amiraliyev, G.M. and Çakır, M., “Numerical solution of the singularly perturbed problem with nonlocal boundary condition”, Applied Mathematics and Mechanics, 23: 755 764, (2002). Google scholar. [5] Bakhvalov, N.S., “On optimization of methods for solving boundary-value problems in the presence of a boundary layer”, The use of special transformation the numerical solution of bounary-layer problems, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 9(4): 841-859, (1969). Google scholar.
2. [6] Nayfeh, A.H., Introduction to Perturbation Techniques, Wiley, New York, (1993).[7] Bitsadze, A.V. and Samarskii, A.A., 1969. On some simpler generalization of linear elliptic boundary value problems. Doklady Akademii Nauk SSSR. 185: 739-740. Google scholar.[8] Cakır, M., “Uniform second-order difference method for a singularly perturbed three-point boundary value problem”, Hindawi Publishing Corporation Advances in Difference Equations, 13 pages, (2010). Google scholar.[9] Cakır, M. and Amiraliyev, G.M., “Numerical solution of a singularly perturbed three-point boundary value problem”, International Journal of Applied Mathematics, 84: 1465- 1481, (2007). Google scholar.[10] Cakır, M. and Amiraliyev, G.M., “A numerical method for a singularly perturbed three-point boundary value problem”, Hindawi Publishing Corporation Journal of Applied Math, 17 pages, (2010). Google scholar.[11] Cakır, M. and Arslan, D., “A numerical method for nonlinear singularly perturbed multi-point boundary value problem”, Journal of Applied Mathematics and Physics, 4: 1143-1156, (2016). Google scholar.[12] Cakır, M. and Arslan, D., “Finite difference method for nonlocal singularly perturbed problem”, International Journal of Modern Research in Engineering and Technology, 1(5): 25-39, (2016). Google scholar.[13] Cakır, M. and Arslan, D., “Numerical solution of the nonlocal singularly perturbed problem”, International Journal of Modern Research in Engineering and Technology, 1(5):13-24, (2016). Google scholar.[14] Chegis, R., “The Numerical solution of problems with small parameter at higher derivatives and nonlocal conditions”, Lietuvos Matematikos Rinkinys. (in Russian), 28: 144-152, (1988). Google scholar. [15] Cimen, E. and Amiraliyev, G.M. “A uniform convergent method for singularly perturbed nonlinear differential-difference equation”, Journal of Informatics and Mathematical Sciences, 9: 191–199, (2017). Google scholar.[16] Cimen, E. and Cakir, M. “Numerical treatment of nonlocal boundary value problem with layer behaviour”, Bull. Belg. Math. Soc. Simon Stevin, 24, (2017). Google scholar.[17] Cimen, E. “A priori estimates for solution of singularly perturbed boundary value problem with delay in convection term”, J. Math. Anal., 8: 202–211, (2017). Google scholar.[18] Doolan, E.P., Miller, J.J.H. And Schilders, W.H.A., Uniform Numerical Methods for Problem with Initial and Boundary Layers, Boole Press, Dublin, (1980). Google scholar.
3. [19] Farrel, P.A., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I., “A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation”, SIAM Journal on Numerical Analysis, 33:1135-1149, (1996). Google scholar.[20] Gupta, C.P. and Trofimchuk, S.I., “A sharper condition for the solvability of a three-point second order boundary value problem”, Journal of Mathematical Analysis and Applications, 205: 586–597, (1997). Google scholar.[21] Miller, J.J.H., O’Riordan, E. and Shishkin, G.I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, (1996). Google scholar.[22] Roos, H.G., Stynes, M. and Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equation: Convection-Diffusion and Flow Problems, Springer-Verlag, Berlin, 604, (2008). Google scholar.[23] Jankowski, T., “Existence of solutions of differential equations with nonlinear multipoint bondary conditions”, Comput. Math. Appl., 47:1095-1103, (2004). Google scholar.[24] O'Malley, R.E., Singular Perturbation Methods for Ordinary Differential Equations. Springer Verlag, New York (1991). Google scholar.[25] Stynes, M, Roos, H.G and Tobiska, L., Robust Numerical Methods for Singularly Perturbed Dif- ferential Equations, Springer-Verlag, Berlin (2008). Google scholar.[26] Geng, Z. and Tang, Q., Piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problem, Applied Mathematics Letters, 62, 1-6, (2016). Google scholar.