A Novel Numerical Approach for Solving Convection-Diffusion Problem with Boundary Layer Behavior

Author:

ARSLAN Derya,ÇAKIR Musa,MASİHA Younis

Publisher

Gazi University Journal of Science

Reference3 articles.

1. [1] Amiraliyev, G.M. and Mamedov, Y.D., “Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations”, Tr. J. of Math., 19(1995):207-222, (1995). Google scholar.[2] Amiraliyev, G.M., “Difference method for a singularly perturbed initial value problem”, Turkish Journal of Mathematics, 22: 283-294, (1998). Google scholar.[3] Amiraliyev, G.M. and Çakır, M., “A uniformily convergent difference scheme for singularly perturbed problem with convective term and zeroth order reduced equation”, International Journal of Applied Mathematics, 2(12): 1407-1419, (2000). Google scholar.[4] Amiraliyev, G.M. and Çakır, M., “Numerical solution of the singularly perturbed problem with nonlocal boundary condition”, Applied Mathematics and Mechanics, 23: 755 764, (2002). Google scholar. [5] Bakhvalov, N.S., “On optimization of methods for solving boundary-value problems in the presence of a boundary layer”, The use of special transformation the numerical solution of bounary-layer problems, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 9(4): 841-859, (1969). Google scholar.

2. [6] Nayfeh, A.H., Introduction to Perturbation Techniques, Wiley, New York, (1993).[7] Bitsadze, A.V. and Samarskii, A.A., 1969. On some simpler generalization of linear elliptic boundary value problems. Doklady Akademii Nauk SSSR. 185: 739-740. Google scholar.[8] Cakır, M., “Uniform second-order difference method for a singularly perturbed three-point boundary value problem”, Hindawi Publishing Corporation Advances in Difference Equations, 13 pages, (2010). Google scholar.[9] Cakır, M. and Amiraliyev, G.M., “Numerical solution of a singularly perturbed three-point boundary value problem”, International Journal of Applied Mathematics, 84: 1465- 1481, (2007). Google scholar.[10] Cakır, M. and Amiraliyev, G.M., “A numerical method for a singularly perturbed three-point boundary value problem”, Hindawi Publishing Corporation Journal of Applied Math, 17 pages, (2010). Google scholar.[11] Cakır, M. and Arslan, D., “A numerical method for nonlinear singularly perturbed multi-point boundary value problem”, Journal of Applied Mathematics and Physics, 4: 1143-1156, (2016). Google scholar.[12] Cakır, M. and Arslan, D., “Finite difference method for nonlocal singularly perturbed problem”, International Journal of Modern Research in Engineering and Technology, 1(5): 25-39, (2016). Google scholar.[13] Cakır, M. and Arslan, D., “Numerical solution of the nonlocal singularly perturbed problem”, International Journal of Modern Research in Engineering and Technology, 1(5):13-24, (2016). Google scholar.[14] Chegis, R., “The Numerical solution of problems with small parameter at higher derivatives and nonlocal conditions”, Lietuvos Matematikos Rinkinys. (in Russian), 28: 144-152, (1988). Google scholar. [15] Cimen, E. and Amiraliyev, G.M. “A uniform convergent method for singularly perturbed nonlinear differential-difference equation”, Journal of Informatics and Mathematical Sciences, 9: 191–199, (2017). Google scholar.[16] Cimen, E. and Cakir, M. “Numerical treatment of nonlocal boundary value problem with layer behaviour”, Bull. Belg. Math. Soc. Simon Stevin, 24, (2017). Google scholar.[17] Cimen, E. “A priori estimates for solution of singularly perturbed boundary value problem with delay in convection term”, J. Math. Anal., 8: 202–211, (2017). Google scholar.[18] Doolan, E.P., Miller, J.J.H. And Schilders, W.H.A., Uniform Numerical Methods for Problem with Initial and Boundary Layers, Boole Press, Dublin, (1980). Google scholar.

3. [19] Farrel, P.A., Miller, J.J.H., O’Riordan, E. and Shishkin, G.I., “A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation”, SIAM Journal on Numerical Analysis, 33:1135-1149, (1996). Google scholar.[20] Gupta, C.P. and Trofimchuk, S.I., “A sharper condition for the solvability of a three-point second order boundary value problem”, Journal of Mathematical Analysis and Applications, 205: 586–597, (1997). Google scholar.[21] Miller, J.J.H., O’Riordan, E. and Shishkin, G.I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, (1996). Google scholar.[22] Roos, H.G., Stynes, M. and Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equation: Convection-Diffusion and Flow Problems, Springer-Verlag, Berlin, 604, (2008). Google scholar.[23] Jankowski, T., “Existence of solutions of differential equations with nonlinear multipoint bondary conditions”, Comput. Math. Appl., 47:1095-1103, (2004). Google scholar.[24] O'Malley, R.E., Singular Perturbation Methods for Ordinary Differential Equations. Springer Verlag, New York (1991). Google scholar.[25] Stynes, M, Roos, H.G and Tobiska, L., Robust Numerical Methods for Singularly Perturbed Dif- ferential Equations, Springer-Verlag, Berlin (2008). Google scholar.[26] Geng, Z. and Tang, Q., Piecewise shooting reproducing kernel method for linear singularly perturbed boundary value problem, Applied Mathematics Letters, 62, 1-6, (2016). Google scholar.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3