Ascorbic Acid Enhances the Metabolic Activity, Growth and Collagen Production of Human Dermal Fibroblasts Growing in Three-dimensional (3D) Culture

Author:

DİKİCİ Serkan1ORCID

Affiliation:

1. Izmir Institute of Technology

Abstract

Tissue engineering (TE) enables the development of functional synthetic substitutes to be replaced with damaged tissues and organs instead of the use of auto or allografts. A wide range of biomaterials is currently in use as TE scaffolds. Among these materials, naturally sourced ones are favorable due to being highly biocompatible and supporting cell growth and function, whereas synthetic ones are advantageous because of the high tunability on mechanical and physical properties as well as being easy to process. Alongside the advantages of synthetic polymers, they mostly show hydrophobic behavior that limits biomaterial-cell interaction and, consequently, the functioning of the developed TE constructs. In this study, we assessed the impact of L-Ascorbic acid 2-phosphate (AA2P) on improving the culture conditions of human dermal fibroblasts (HDFs) growing on a three-dimensional (3D) scaffold made of polycaprolactone (PCL) using emulsion templating. Our results demonstrated that AA2P enhances the metabolic activity and growth of HDFs as well as collagen deposition by them when supplemented in their growth medium at 50 µg/mL concentration. It showed a great potential to be used as a growth medium supplement to circumvent the disadvantages of culturing human cells on a synthetic biomaterial that is not favored in default. AA2P's potential to improve cell growth and collagen deposition may prove an effective way to culture human cells on 3D PCL PolyHIPE scaffolds for various TE applications.

Funder

Izmir Institute of Technology (IZTECH) Research Foundation

Publisher

Gazi University Journal of Science

Subject

Multidisciplinary,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3