Square Lattice Iridates

Author:

Bertinshaw Joel1,Kim Y.K.23,Khaliullin Giniyat1,Kim B.J.45

Affiliation:

1. Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany

2. Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea

3. Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea

4. Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea;

5. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 790-784, Republic of Korea

Abstract

Over the past few years, Sr2IrO4, a single-layer member of the Ruddlesden–Popper series iridates, has received much attention as a close analog of cuprate high-temperature superconductors. Although there is not yet firm evidence for superconductivity, a remarkable range of cuprate phenomenology has been reproduced in electron- and hole-doped iridates including pseudogaps, Fermi arcs, and d-wave gaps. Furthermore, many symmetry-breaking orders reminiscent of those decorating the cuprate phase diagram have been reported using various experimental probes. We discuss how the electronic structures of Sr2IrO4 through strong spin-orbit coupling leads to the low-energy physics that had long been unique to cuprates, what the similarities and differences between cuprates and iridates are, and how these advance the field of high-temperature superconductivity by isolating essential ingredients of superconductivity from a rich array of phenomena that surround it. Finally, we comment on the prospect of finding a new high-temperature superconductor based on the iridate series.

Publisher

Annual Reviews

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3