Control of Low-Inertia Power Systems

Author:

Dörfler Florian1,Groß Dominic2

Affiliation:

1. Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland;

2. Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA;

Abstract

Electric power systems are undergoing an unprecedented transition from fossil fuel–based power plants to low-inertia systems that rely predominantly on power electronics and renewable energy resources. This article reviews the resulting control challenges and modeling fallacies, at both the device and system level, and focuses on novel aspects or classical concepts that need to be revised in light of the transition to low-inertia systems. To this end, we survey the literature on modeling of low-inertia systems, review research on the control of grid-connected power converters, and discuss the frequency dynamics of low-inertia systems. Moreover, we discuss system-level services from a control perspective. Overall, we conclude that the system-theoretic mindset is essential to bridge different research communities and understand the complex interactions of power electronics, electric machines, and their controls in large-scale low-inertia power systems.

Publisher

Annual Reviews

Subject

Artificial Intelligence,Human-Computer Interaction,Engineering (miscellaneous),Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A stiffness-oriented model order reduction method for low-inertia power systems;Electric Power Systems Research;2024-10

2. An IoT-Based Framework for Distributed Generic Microgrid Controllers;IEEE Transactions on Control Systems Technology;2024-09

3. Complex frequency divider;Electric Power Systems Research;2024-09

4. Quantitative Stability Conditions for Grid-Forming Converters With Complex Droop Control;IEEE Transactions on Power Electronics;2024-09

5. Data-Driven Predictive Control Strategy to Improve Robust Performance for Three-Level Inverters With Reduced Common-Mode Voltage;IEEE Journal of Emerging and Selected Topics in Power Electronics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3