Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily

Author:

Hoffman Brian M.1,Broderick William E.2,Broderick Joan B.2

Affiliation:

1. Department of Chemistry, Northwestern University, Evanston, Illinois, USA

2. Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA;

Abstract

Radical S-adenosylmethionine (SAM) enzymes use a site-differentiated [4Fe-4S] cluster and SAM to initiate radical reactions through liberation of the 5′-deoxyadenosyl (5′-dAdo•) radical. They form the largest enzyme superfamily, with more than 700,000 unique sequences currently, and their numbers continue to grow as a result of ongoing bioinformatics efforts. The range of extremely diverse, highly regio- and stereo-specific reactions known to be catalyzed by radical SAM superfamily members is remarkable. The common mechanism of radical initiation in the radical SAM superfamily is the focus of this review. Most surprising is the presence of an organometallic intermediate, Ω, exhibiting an Fe–C5′-adenosyl bond. Regioselective reductive cleavage of the SAM S–C5′ bond produces 5′-dAdo• to form Ω, with the regioselectivity originating in the Jahn–Teller effect. Ω liberates the free 5′-dAdo• as the catalytically active intermediate through homolysis of the Fe–C5′ bond, in analogy to Co–C5′ bond homolysis in B12, which was once viewed as biology's choice of radical generator.

Publisher

Annual Reviews

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3