Photophysiological Expressions of Iron Stress in Phytoplankton

Author:

Behrenfeld Michael J.,Milligan Allen J.1

Affiliation:

1. Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331-2902;

Abstract

Iron is essential for all life, but it is particularly important to photoautotrophs because of the many iron-dependent electron transport components in photosynthetic membranes. Since the proliferation of oxygenic photosynthesis in the Archean ocean, iron has been a scarce commodity, and it is now recognized as a limiting resource for phytoplankton over broad expanses of the open ocean and even in some coastal/continental shelf waters. Iron stress does not impair photochemical or carbon fixation efficiencies, and in this respect it resembles the highly tuned photosynthetic systems of steady-state macronutrient-limited phytoplankton. However, iron stress does present unique photophysiological challenges, and phytoplankton have responded to these challenges through major architectural changes in photosynthetic membranes. These evolved responses include overexpression of photosynthetic pigments and iron-economic pathways for ATP synthesis, and they result in diagnostic fluorescence properties that allow a broad appraisal of iron stress in the field and even the detection of iron stress from space.

Publisher

Annual Reviews

Subject

Oceanography

Cited by 183 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3