Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function

Author:

Schneider Sabine1,Wright Christina M.1,Heuckeroth Robert O.12

Affiliation:

1. Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;

2. Abramson Research Center, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania 19104, USA

Abstract

At the most fundamental level, the bowel facilitates absorption of small molecules, regulates fluid and electrolyte flux, and eliminates waste. To successfully coordinate this complex array of functions, the bowel relies on the enteric nervous system (ENS), an intricate network of more than 500 million neurons and supporting glia that are organized into distinct layers or plexi within the bowel wall. Neuron and glial diversity, as well as neurotransmitter and receptor expression in the ENS, resembles that of the central nervous system. The most carefully studied ENS functions include control of bowel motility, epithelial secretion, and blood flow, but the ENS also interacts with enteroendocrine cells, influences epithelial proliferation and repair, modulates the intestinal immune system, and mediates extrinsic nerve input. Here, we review the many different cell types that communicate with the ENS, integrating data about ENS function into a broader view of human health and disease. In particular, we focus on exciting new literature highlighting relationships between the ENS and its lesser-known interacting partners.

Publisher

Annual Reviews

Subject

Physiology

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trends in 3D models of inflammatory bowel disease;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2024-03

2. Adiponectin affects ileal contractility of mouse preparations;American Journal of Physiology-Gastrointestinal and Liver Physiology;2024-02-01

3. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats;Heliyon;2024-02

4. Bioengineering of Intestinal Grafts;Gastroenterology Clinics of North America;2024-01

5. Endothelin signaling in development;Development;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3