Novel Computational Approaches to Polypharmacology as a Means to Define Responses to Individual Drugs

Author:

Xie Lei1,Xie Li2,Kinnings Sarah L.3,Bourne Philip E.2

Affiliation:

1. Department of Computer Science, Hunter College, The City University of New York, New York, New York 10065;

2. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093;

3. Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093

Abstract

Polypharmacology, which focuses on designing therapeutics to target multiple receptors, has emerged as a new paradigm in drug discovery. Polypharmacological effects are an attribute of most, if not all, drug molecules. The efficacy and toxicity of drugs, whether designed as single- or multitarget therapeutics, result from complex interactions between pharmacodynamic, pharmacokinetic, genetic, epigenetic, and environmental factors. Ultimately, to predict a drug response phenotype, it is necessary to understand the change in information flow through cellular networks resulting from dynamic drug-target interactions and the impact that this has on the complete biological system. Although such is a future objective, we review recent progress and challenges in computational techniques that enable the prediction and analysis of in vitro and in vivo drug-response phenotypes.

Publisher

Annual Reviews

Subject

Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3