Human Induced Pluripotent Stem Cell (hiPSC)-Derived Cells to Assess Drug Cardiotoxicity: Opportunities and Problems

Author:

Magdy Tarek12,Schuldt Adam J.T.123,Wu Joseph C.45,Bernstein Daniel46,Burridge Paul W.12

Affiliation:

1. Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;

2. Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA

3. Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA

4. Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA

5. Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA

6. Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA

Abstract

Billions of US dollars are invested every year by the pharmaceutical industry in drug development, with the aim of introducing new drugs that are effective and have minimal side effects. Thirty percent of in-pipeline drugs are excluded in an early phase of preclinical and clinical screening owing to cardiovascular safety concerns, and several lead molecules that pass the early safety screening make it to market but are later withdrawn owing to severe cardiac side effects. Although the current drug safety screening methodologies can identify some cardiotoxic drug candidates, they cannot accurately represent the human heart in many aspects, including genomics, transcriptomics, and patient- or population-specific cardiotoxicity. Despite some limitations, human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) are a powerful and evolving technology that has been shown to recapitulate many attributes of human cardiomyocytes and their drug responses. In this review, we discuss the potential impact of the inclusion of the hiPSC-CM platform in premarket candidate drug screening

Publisher

Annual Reviews

Subject

Pharmacology,Toxicology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3