Wave Dark Matter

Author:

Hui Lam1

Affiliation:

1. Center for Theoretical Physics, Department of Physics, Columbia University, New York, NY 10027, USA;

Abstract

We review the physics and phenomenology of wave dark matter: a bosonic dark matter candidate lighter than about 30 eV. Such particles have a de Broglie wavelength exceeding the average interparticle separation in a galaxy like the Milky Way and are, thus, well described as a set of classical waves. We outline the particle physics motivations for such particles, including the quantum chromodynamics axion as well as ultralight axion-like particles such as fuzzy dark matter. The wave nature of the dark matter implies a rich phenomenology: ▪  Wave interference gives rise to order unity density fluctuations on de Broglie scale in halos. One manifestation is vortices where the density vanishes and around which the velocity circulates. There is one vortex ring per de Broglie volume on average. ▪  For sufficiently low masses, soliton condensation occurs at centers of halos. The soliton oscillates and undergoes random walks, which is another manifestation of wave interference. The halo and subhalo abundance is expected to be suppressed at small masses, but the precise prediction from numerical wave simulations remains to be determined. ▪  For ultralight ∼10−22 eV dark matter, the wave interference substructures can be probed by tidal streams or gravitational lensing. The signal can be distinguished from that due to subhalos by the dependence on stream orbital radius or image separation. ▪  Axion detection experiments are sensitive to interference substructures for wave dark matter that is moderately light. The stochastic nature of the waves affects the interpretation of experimental constraints and motivates the measurement of correlation functions. Current constraints and open questions, covering detection experiments and cosmological, galactic, and black hole observations, are discussed.

Publisher

Annual Reviews

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3