microRNA: A Master Regulator of Cellular Processes for Bioengineering Systems

Author:

Sun Wei1,Julie Li Yi-Shuan2,Huang Hsien-Da3,Shyy John Y-J.1,Chien Shu2

Affiliation:

1. Division of Biomedical Sciences, University of California, Riverside, California 92521;

2. Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093;

3. Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, National Chiao Tung University, HsinChu, Taiwan

Abstract

microRNAs (miRNAs) are small RNAs 18 to 24 nucleotides in length that serve the pivotal function of regulating gene expression. Instead of being translated into proteins, the mature single-stranded miRNA binds to messenger RNAs (mRNAs) to interfere with the translational process. It is estimated that whereas only 1% of the genomic transcripts in mammalian cells encode miRNA, nearly one-third of the encoded genes are regulated by miRNA. Various bioinformatics databases, tools, and algorithms have been developed to predict the sequences of miRNAs and their target genes. In combination with the in silico approaches in systems biology, experimental studies on miRNA provide a new bioengineering approach for understanding the mechanism of fine-tuning gene regulation. This review aims to provide state-of-the-art information on this important mechanism of gene regulation for researchers working in biomedical engineering and related fields. Particular emphases are placed on summarizing the current tools and strategies for miRNA study from a bioengineering perspective and the possible applications of miRNAs (such as antagomirs and miRNA sponges) in biomedical engineering research.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3