Assessing Cartilage Biomechanical Properties: Techniques for Evaluating the Functional Performance of Cartilage in Health and Disease

Author:

Lakin Benjamin A.12,Snyder Brian D.13,Grinstaff Mark W.24

Affiliation:

1. Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215;

2. Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215;

3. Orthopedic Center, Children's Hospital, Boston, Massachusetts 02115

4. Department of Chemistry, Boston University, Boston, Massachusetts 02215

Abstract

Osteoarthritis (OA) affects millions of people and results in weakened hyaline cartilage due to overloading. During joint articulation, hyaline cartilage must withstand high loads while maintaining low friction to prevent wear and tissue loss. Thus, cartilage compressive stiffness and the coefficient of friction are important indicators of the tissue's functional performance. These mechanical properties are often measured ex vivo using mechanical testing regimens, but arthroscopic handheld probes (e.g., for indentation testing, ultrasound, and optical coherence tomography) and noninvasive imaging modalities (e.g., magnetic resonance imaging and computed tomography) provide opportunities for either direct or indirect in vivo assessment of cartilage mechanical properties. In this review, we examine the application of these techniques for evaluating cartilage, with a focus on measuring mechanical properties for early-stage OA diagnosis. For each approach, we discuss the advantages, disadvantages, current and potential clinical utility, and promising technological improvement.

Publisher

Annual Reviews

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3