Roles of Thiol-Redox Pathways in Bacteria

Author:

Ritz Daniel1,Beckwith Jon1

Affiliation:

1. Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115;

Abstract

▪ Abstract  Disulfide bonds in proteins play various important roles. They are either formed as structural features to stabilize the protein or are found only transiently as part of a catalytic or regulatory cycle. In vivo, the formation and reduction of disulfide bonds is catalyzed by specialized thiol-disulfide exchanging enzymes that contain an active site with the sequence motif Cys-X-X-Cys. These proteins have structurally evolved to catalyze predominantly either oxidative reactions or reductive steps. There is mounting evidence that, in addition to the thiol redox potential, the spatial distribution within different cell compartments and the overall redox state of the cell are equally important. In the cytoplasm, multiple pathways play overlapping roles in the reduction of disulfide bonds and additionally, the expression of several components of thiol-redox pathways was shown to respond to the changes in the cellular thiol-redox equilibrium. In the periplasm, two systems coexist, one catalyzing thiol oxidation and the other disulfide reduction. Recent results suggest that two different mechanisms are used to translocate reducing power from the cytoplasm or to dissipate the electrons after oxidation.

Publisher

Annual Reviews

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3