POPULATION BIOLOGY OF HIV-1 INFECTION: Viral and CD4+ T Cell Demographics and Dynamics in Lymphatic Tissues

Author:

Haase A. T.1

Affiliation:

1. Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455;

Abstract

▪ Abstract  Human immunodeficiency virus-1 (HIV-1) is usually transmitted through sexual contact and in the very early stages of infection establishes a persistent infection in lymphatic tissues (LT). Virus is produced and stored at this site in a dynamic process that slowly depletes the immune system of CD4+ T cells, setting the stage for AIDS. In this review, I describe the changes in viral and CD4+ T cell populations in LT over the course of infection and after treatment. I present recent evidence that productively infected CD4+ T cells play an important role in establishing persistent infection from the onset, and that the LT are the major reservoir where virus is produced and stored on follicular dendritic cells (FDCs). I discuss the methods used to define the size of viral and CD4+ T cell populations in LT and the nature of virus-host cell interactions in vivo. These experimental approaches have identified populations of latently and chronically infected cells in which virus can elude host defenses, perpetuate infection, and escape eradication by highly active antiretroviral treatment (HAART). I discuss the dramatic impact of HAART on suppressing virus production, reducing the pool of stored virus, and restoring CD4+ T cell populations. I discuss the contributions of thymopoiesis and other renewal mechanisms, lymphatic homeostasis and trafficking to these changes in CD4+ T cell populations in LT, and conclude with a model of immune depletion and repopulation based on the limited regenerative capacity of the adult and the uncompensated losses of productively infected cells that treatment stems. The prediction of this model is that immune regeneration will be slow, variable, and partial. It is nonetheless encouraging to know that even in late stages of infection, control of active replication of HIV-1 provides an opportunity for the immune system to recover from the injuries inflicted by infection.

Publisher

Annual Reviews

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3