Affiliation:
1. 1Department of Chemistry, Columbia University, New York, New York 10027;
2. 2Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
Abstract
▪ Abstract We describe large scale ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic reactions. First, technical aspects of the methodology are reviewed, including the hybrid density functional theory (DFT) methods that are typically employed for the QM aspect of the calculations, and various approaches to defining the interface between the QM and MM regions in QM/MM approaches. The modeling of the enzymatic catalytic cycle for three examples—methane monooxygenase, cytochrome P450, and triose phosphate isomerase—are discussed in some depth, followed by a brief summary of other systems that have been investigated by ab initio methods over the past several years. Finally, a discussion of the qualitative and quantitative conclusions concerning enzymatic catalysis that are available from modern ab initio approaches is presented, followed by a conclusion briefly summarizing future prospects.
Subject
Physical and Theoretical Chemistry
Cited by
482 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献