Structure and Dynamics of Conjugated Polymers in Liquid Crystalline Solvents

Author:

Barbara P.F.1,Chang W.-S.1,Link S.12,Scholes G.D.3,Yethiraj Arun4

Affiliation:

1. Center for Nano- and Molecular Science and Technology, and Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712;

2. Current address: Department of Chemistry, Rice University, Houston, Texas 77005;

3. Lash-Miller Chemical Laboratories, University of Toronto, Toronto, Canada M5S 3H6;

4. Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706;

Abstract

A combination of single-molecule spectroscopy and analysis with simulations is used to provide detailed information about the structural and dynamic properties of a fluorescent polymer MEH-PPV (poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]) immersed in a nematic and smectic solvent. In nematic solvents, single-polymer molecules are oriented strongly along the solvent director, much more so than the solvent molecules, confirming Onsager's old prediction. The diffusion anisotropy parallel and perpendicular to the solvent director, however, is less than two, which is similar to that of a spherical colloid in a nematic solvent. In smectic solvents, there is a second orientation of the dissolved polymer perpendicular to the solvent director, which we hypothesize is caused by the polymer occupying the interlayer volume. The research discussed here emphasizes the importance of organization in complex fluids and suggests that the interplay of order on different length scales could be exploited to fabricate novel nanostructured materials.

Publisher

Annual Reviews

Subject

Physical and Theoretical Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3