Affiliation:
1. Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637;
Abstract
We review recent progress in methods for accelerating the convergence of simulations of nonequilibrium systems, specifically nonequilibrium umbrella sampling (NEUS) and forward flux sampling (FFS). These methods account for statistics of dynamical paths between interfaces to enforce sampling of low probability regions of phase space for computing steady-state averages, including transition rates, for systems driven arbitrarily far from equilibrium. Recent advances in NEUS allow for efficient sampling of complex systems by focusing sampling in the vicinity of a one-dimensional manifold (string) that connects regions of interest in phase space; this procedure can be extended to the case of two strings that describe the forward and backward transition ensembles separately, which is useful, as they do not, in general, coincide. We recast FFS in the framework of NEUS to facilitate comparison of the two methods. We conclude by discussing selected applications of interest.
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献