PLASMA LIPID TRANSFER PROTEINS, HIGH-DENSITY LIPOPROTEINS, AND REVERSE CHOLESTEROL TRANSPORT

Author:

Bruce Can1,Chouinard Roland A.1,Tall Alan R.1

Affiliation:

1. Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032;

Abstract

▪ Abstract  Cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) are members of the lipid transfer/lipopolysaccharide binding protein gene family. Recently, the crystal structure of one of the members of the gene family, bactericidal permeability increasing protein, was solved, providing potential insights into the mechanisms of action of CETP and PLTP. These molecules contain intrinsic lipid binding sites and appear to act as carrier proteins that shuttle between lipoproteins to redistribute lipids. The phenotype of human CETP genetic deficiency states and CETP transgenic mice indicates that CETP plays a major role in the catabolism of high-density lipoprotein (HDL) cholesteryl esters and thereby influences the concentration, apolipoprotein content, and size of HDL particles in plasma. PLTP also appears to have an important role in determining HDL levels and speciation. Recent data indicate that genetic CETP deficiency is associated with an excess of coronary heart disease in humans, despite increased HDL levels. Also, CETP expression is anti-atherogenic in many mouse models, even while lowering HDL. These data tend to support the reverse cholesterol transport hypothesis, i.e. that anti-atherogenic properties of HDL are related to its role in reverse cholesterol transport. Recently, another key molecule involved in this pathway was identified, scavenger receptor BI; this mediates the selective uptake of HDL cholesteryl esters in the liver and thus constitutes a pathway of reverse cholesterol transport parallel to that mediated by CETP. Reflecting its role in reverse cholesterol transport, the CETP gene is up-regulated in peripheral tissues and liver in response to dietary or endogenous hypercholesterolemia. An analysis of the CETP proximal promoter indicates that it contains sterol regulatory elements highly homologous to those present in 3-hydroxy-3-methylglutaryl-coenzyme A reductase; the CETP gene is transactivated by the binding of SREBP-1 to these elements. A challenge for the future will be the manipulation of components of the reverse cholesterol transport pathway, such as CETP, PLTP, or scavenger receptor BI for therapeutic benefit.

Publisher

Annual Reviews

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3