PIP2 and Proteins: Interactions, Organization, and Information Flow

Author:

McLaughlin Stuart12,Wang Jiyao12,Gambhir Alok12,Murray Diana12

Affiliation:

1. Department of Physiology and Biophysics, HSC, SUNY Stony Brook, New York 11794-8661;

2. Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, Box 62, New York, New York 10021

Abstract

▪ Abstract  We review the physical properties of phosphatidylinositol 4,5-bisphosphate (PIP2) that determine both its specific interactions with protein domains of known structure and its nonspecific electrostatic sequestration by unstructured domains. Several investigators have postulated the existence of distinct pools of PIP2 within the cell to account for the myriad functions of this lipid. Recent experimental work indicates certain regions of the plasma membrane—membrane ruffles and nascent phagosomes—do indeed concentrate PIP2. We consider two mechanisms that could account for this phenomenon: local synthesis and electrostatic sequestration. We conclude by considering the hypothesis that proteins such as MARCKS bind a significant fraction of the PIP2 in a cell, helping to sequester it in lateral membrane domains, then release this lipid in response to local signals such as an increased concentration of Ca++/calmodulin or activation of protein kinase C.

Publisher

Annual Reviews

Subject

Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3