Affiliation:
1. Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721;
2. Zoologie II, Biozentrum, Würzburg, 97074 Germany;
Abstract
▪ Abstract We review the physiological, molecular, and neural mechanisms of insect color vision. Phylogenetic and molecular analyses reveal that the basic bauplan, UV-blue-green-trichromacy, appears to date back to the Devonian ancestor of all pterygote insects. There are variations on this theme, however. These concern the number of color receptor types, their differential expression across the retina, and their fine tuning along the wavelength scale. In a few cases (but not in many others), these differences can be linked to visual ecology. Other insects have virtually identical sets of color receptors despite strong differences in lifestyle. Instead of the adaptionism that has dominated visual ecology in the past, we propose that chance evolutionary processes, history, and constraints should be considered. In addition to phylogenetic analyses designed to explore these factors, we suggest quantifying variance between individuals and populations and using fitness measurements to test the adaptive value of traits identified in insect color vision systems.
Subject
Insect Science,Ecology, Evolution, Behavior and Systematics
Cited by
1189 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献