Affiliation:
1. 219 Molecular Biology Institute, University of California at Los Angeles, Box 951570, Los Angeles, California 90095-1570;
2. Biochemistry Department, Purdue University, West Lafayette, Indiana 47907-1153;
Abstract
▪ Abstract The cytochromes that function in photosynthesis in cyanobacteria, algae, and higher plants have, like the other photosynthetic catalysts, been largely conserved in their structure and function during evolution. Cyanobacteria and algae contain cytochrome c6, which is not found in higher plants and which may enhance survival in their planktonic mode of life. Cyanobacteria and algae contain another cytochrome, low-potential c549, which is not found in higher plants. This cytochrome has a structural role in PSII and may contribute to anaerobic survival. There is a third unique cytochrome, cytochrome M, in the planktonic photosynthesizers, and its function is unknown. New evidence is appearing to indicate evolution of cytochrome interaction mechanisms during the evolution of photosynthesis. The ease of cytochrome gene manipulation in cyanobacteria and in Chlamydomonas reinhardtii now provides great advantages in understanding of photosynthesis. The solution of tertiary and quaternary structures of cytochromes and cytochrome complexes will provide structural and functional detail at atomic resolution.
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献