Raman Signal Enhancement in Deep Spectroscopy of Turbid Media

Author:

Matousek P.1

Affiliation:

1. Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, United Kingdom

Abstract

A new, passive method for enhancing spontaneous Raman signals for the spectroscopic investigation of turbid media is presented. The main areas to benefit are transmission Raman and spatially offset Raman spectroscopy approaches for deep probing of turbid media. The enhancement, which is typically several fold, is achieved using a multilayer dielectric optical element, such as a bandpass filter, placed within the laser beam over the sample. This element prevents loss of the photons that re-emerge from the medium at the critical point where the laser beam enters the sample, the point where major photon loss occurs. This leads to a substantial increase of the coupling of laser radiation into the sample and consequently an enhanced laser photon–medium interaction process. The method utilizes the angular dependence of dielectric optical elements on impacting photon direction with its transmission spectral profile shifting to the blue with increase in the deviation of photons away from normal incidence. This feature enables it to act as a unidirectional mirror passing a semi-collimated laser beam through unhindered from one side, and at the other side, reflecting photons emerging from the sample at random directions back into it with no restrictions to the detected Raman signal. With substantial restrictions to the spectral range, the concept can also be applied to conventional backscattering Raman spectroscopy. The use of additional reflective elements around the sample to enhance the Raman signal further is also discussed. The increased signal strength yields higher signal quality, a feature important in many applications. Potential uses include sensitive noninvasive disease diagnosis in vivo, security screening, and quality control of pharmaceutical products. The concept is also applicable in an analogous manner to other types of analytical methods such as fluorescence or near-infrared (NIR) absorption spectroscopy of turbid media or it can be used to enhance the effectiveness of the coupling of laser radiation into tissue in applications such as photodynamic therapy for cancer treatment.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3