Quantitative Analysis of Sulfur Dioxide with Passive Fourier Transform Infrared Remote Sensing Interferogram Data

Author:

Mattu Mutua J.1,Small Gary W.1,Combs Roger J.1,Knapp Robert B.1,Kroutil Robert T.1

Affiliation:

1. Center for Intelligent Chemical Instrumentation, Ohio University, Department of Chemistry, Athens, Ohio 45701-2979 (M.J.M., G.W.S.); and U.S. Army, Edgewood Chemical & Biological Center, Aberdeen Proving Ground, Maryland 21010-5424 (R.J.C., R.B.K., R.T.K.)

Abstract

Multivariate calibration models are developed for the determination of sulfur dioxide (SO2) by passive Fourier transform infrared (FT-IR) remote sensing measurements. In a series of experiments designed to simulate the measurement of SO2 from industrial stack emissions, low-angle sky backgrounds are viewed through the windows of a heated flow-through gas cell. With this apparatus, infrared emission from the hot SO2 is measured against the cold background of the sky. The FT-IR interferogram data collected are analyzed directly in the construction of the calibration models. Bandpass digital filters are applied to the interferograms to isolate the modulated infrared frequencies corresponding to either the asymmetric or symmetric S–O stretching vibrations at 1361 and 1151 cm−1, respectively. Quantitative calibration models are constructed by submitting short segments of the filtered interferograms to partial least-squares regression analysis. The experimental design allows the impact of variation in the temperature of the SO2 to be evaluated for its effect on the calibration models. Three data sets are constructed consisting of data with increasing temperature variation. When the temperature variation in the data is less than 30 °C, the calibration models are able to achieve a cross-validation standard error of prediction (CV-SEP) of approximately 27 ppm-m across the 185 to 727 ppm-m range of density-corrected, path-averaged concentration. These calibration models are applied to an interferogram segment of only 250 points, and do not require any separate measurement of the infrared background. A comparison of the results from the interferogram-based analyses with those obtained in an analysis of single-beam spectral data reveals similar performances for the models computed with both types of data.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3