Canonical Correlation Analysis of Mid- and Near-Infrared Oil Spectra

Author:

Devaux M. F.1,Robert P.1,Qannari A.1,Safar M.1,Vigneau E.1

Affiliation:

1. Institut National de la Recherche Agronomique, Laboratoire de Technologie Appliquée à la Nutrition (M.F.D., P.R., M.S.) and Ecole Nationale d'Ingénieurs des Techniques des Industries Agricoles et Alimentaires, Chaire de Mathématique (A.Q., E.V.), Rue de la Géraudière, 44072 Nantes Cédex 03, France

Abstract

A mathematical procedure based on Canonical Correlation Analysis (CCA) was used in order to assign the wavelengths of the near-infrared spectra through knowledge of the mid-infrared spectra. The relevance of the treatment was tested on commercial oils that mainly differ in their level of unsaturation. Initially, two separated Principal Component Analyses (PCAs) were performed on the near- and mid-infrared data to overcome the high intercorrelations across the wavelengths. CCA was then applied to the resulting principal components. Near- and mid-infrared canonical variates were assessed so that they achieved maximum correlation. The procedure makes it possible to draw CCA spectral patterns that exhibit significant positive and negative peaks. The first near-infrared canonical variate was highly correlated with the first mid-infrared canonical variate ( r2 = 0.97). The corresponding near- and mid-infrared CCA spectral patterns were therefore given the same interpretation. The mid-infrared pattern opposed negative peaks characteristic of CH2 groups to the positive peaks of CH3 and =CH groups. Consequently, in the near-infrared pattern, the positive peaks at 1708, 2140, 2170, and 2480 nm were assigned to CH3 or =CH groups, and the negative peaks at 2304, 2344, and 2445 nm were assigned to CH2 groups. A more precise interpretation was obtained by comparing the wavelengths observed to theoretical values and to previous assignments.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3