A Family of Highly Accurate Interpolation Functions for Magnitude-Mode Fourier Transform Spectroscopy

Author:

Keefe C. Dale1,Comisarow Melvin B.1

Affiliation:

1. Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Y6, Canada

Abstract

A new family of highly efficient interpolating functions, the KCe functions, KCe( ω) = ( aω2 + bω + c) e, where e is the exponent, is developed for three-point frequency interpolation of discrete, magnitude-mode, apodized Fourier transform spectra. The family is characterized by high interpolation accuracy and ease of implementation. Various members of the family can be generated by varying the exponent. Prior work from this laboratory indicated that the parabola is the interpolating function of choice for interpolation of discrete, apodized magnitude spectra. We show here that, compared to parabolic interpolation, KCe interpolation typically gives residual systematic errors which are lower by between one and two orders of magnitude. These systematic errors are analytically derived and the efficacy of interpolation is rigorously examined as a function of the KCe exponent, the number of zero-fillings, the amount of damping in the transient, and the window function used to apodize the spectrum. For Hanning-apodized spectra, the KC5.5 function gives the lowest residual systematic errors, which are typically 15 times less than those remaining after parabolic interpolation. Similarly, the KC6.6 function is optimal for Hamming-apodized spectra (22 times better than parabolic interpolation) and the KC9.5 function is optimal for Blackman-Harris-apodized spectra (80 times better than parabolic interpolation). By extrapolation from other optimal KCe functions, we estimate that the optimal KCe function for interpolation of Kaiser-Bessel-apodized spectra is KC12.5. Analytical formulae for propagation of random errors in spectral intensity into random errors in interpolated frequency are derived for parabolic interpolation and for KCe interpolation. These error propagation formulae give random errors which are inversely proportional to the SNR of the spectrum. These formulae are evaluated with the appropriate KCe exponent for each of the Hanning, the Hamming, and the Blackman-Harris windows. In all cases we find that the random error is essentially independent of both window type and interpolation scheme. While zero-filling prior to interpolation reduces the residual systematic frequency interpolation error, it increases the random frequency error. The increase in random error with higher levels of zero-filling is explained. Because the random errors are proportional to noise level, the optimal number of zero-fillings varies with SNR. If the apodizing window is chosen to match the dynamic range of the spectrum, as we have previously recommended, then the systematic error for KCe interpolation of non-zero-filled spectra is so low that the overall error is dominated by the random error. In this case, KCe interpolation is, for all intents and purposes, exact. Since the random error is minimized by no zero-filling, the lowest overall error will be achieved by a combination of no zero-filling and KCe interpolation. In constrast, the minimum total error for parabolic interpolation is achieved by interpolation of the once-zero-filled spectrum. A further advantage of KCe interpolation, over and above its lower total error, is that KCe interpolation obviates the need for zero-filling.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of apodization on FT-ICR mass spectrometry analysis of petroleum;International Journal of Mass Spectrometry;2014-11

2. Quantitative Capability of Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for a Complex Mixture;European Journal of Mass Spectrometry;2000-06

3. Interpolation of Hamming-apodized DFT spectra;Electronics and Communications in Japan (Part III: Fundamental Electronic Science);2000-06

4. Quantitation of ion abundances in fourier transform ion cyclotron resonance mass spectrometry;Journal of the American Society for Mass Spectrometry;1998-11-01

5. Application of glow discharge Fourier-transform ion cyclotron resonance mass spectrometry to isotope ratio measurements;International Journal of Mass Spectrometry;1998-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3