Application of Multivariate Strategies to the Classification of Pharmaceutical Excipient Manufacturers Based on Near-Infrared (NIR) Spectra

Author:

Wang Ting1,Ibrahim Ahmed1,Potts Alan R.2,Hoag Stephen W.1

Affiliation:

1. University of Maryland, Department of Pharmaceutical Sciences, Baltimore, MD 21201 USA

2. United States Pharmacopeial Convention, Rockville, MD 20852 USA

Abstract

Using partial least square discriminate analysis (PLSDA), we studied the spectroscopic differences between the commonly used filler-binder microcrystalline cellulose (MCC) from five manufactures. These samples had subtle differences in the chemical and physical properties, which are often the cause of differences in excipient performance. Studying these differences allowed us to build and validate a model to classify five manufacturers of MCC using near-infrared (NIR) spectra. The sample training set includes 39 MCC samples collected from five manufactures with regions spanning the United States of America, Japan, Taiwan, Germany, and Brazil. The samples from individual manufacturers include diverse grades that differ in moisture content, particle size, and bulk density. Optimized pretreatment methods were identified as standard normal variate normalization, followed by Savitzky-Golay second derivative, mean centering, and orthogonal signal correction. The model was optimized with cross-validation and validated with an independent sample set comprising nine samples collected from those five manufacturers. The results showed that none of the samples in the independent validation set was misclassified. The score and loading plots revealed that the differences in content of oxidized cellulose group, water content and states, hydrogen bonding, and degree of polymerization of the MCC samples are responsible for the class differentiation. Permutation test demonstrated that the outcome of the PLSDA model was significantly different from that of the randomly generated model. The advantages and limitations of the method in this type of application were discussed.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3