Naphthoquinones from Onosma: Molecular Mechanisms of Action in the Treatment and Prevention of COVID-19

Author:

KILINÇ Namık1ORCID

Affiliation:

1. Igdir University

Abstract

Absrtact COVID-19, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in December 2019 in Wuhan, China. There is currently no effective treatment or immunization for the virus, and it is spreading rapidly with a high mortality rate. As a crucial CoV enzyme involved in initiating both viral replication and transcription, the COVID-19 main protease (Mpro) is an appealing target for researchers. Novel therapeutics are urgently required to treat the early stages of COVID-19 caused by SARS-CoV-2. Therefore, to find potential COVID-19 Mpro inhibitors, naphthoquinones from the Onosma genus were screened to find out their possible effects on the Mpro enzyme. In this study, we employed a range of computational approaches, including molecular docking and MM-GBSA, to uncover potential inhibitors of SARS-CoV-2 Mpro from existing natural product databases. According to our findings, the molecules deoxyshikonin, 3-hydroxy-isovalerylshikonin, propionylshikonin, and acetylshikonin have high binding affinities for the Mpro enzyme. In addition, it was observed that the other shikonin compounds have anti-Mpro enzyme activity. Docking simulations and molecular mechanics suggest that shikonin derivatives might be effective anti-SARS-CoV-2 compounds.

Publisher

Caucasian Journal of Science

Reference30 articles.

1. Lillie, P. J., Samson, A., Li, A., Adams, K., Capstick, R., Barlow, G. D., Easom, N., Hamilton, E., Moss, P. J., Evans, A., Ivan, M., Taha, Y., Duncan, C. J. A., & Schmid, M. L., & The Airborne HCID Network, PHE Incident Team. (2020). Novel coronavirus disease (Covid-19): The first two patients in the UK with person to person transmission. Journal of Infection, 80, 578–606. https://doi.org/10.1016/j.jinf.2020.02.020

2. Lai, C. C., Liu, Y. H., Wang, C. Y., Wang, Y. H., Hsueh, S. C., Yen, M. Y., Chien Ko, W., & Hsueh, P. R. (2020). Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. Journal of Microbiology, Immunology and Infection, 53(3), 404-412. https://doi.org/10.1016/j.jmii.2020.02.012

3. De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology, 14(8), 523-534. https://doi.org/10.1038/nrmicro.2016.81

4. Wu, J. T., Leung, K., & Leung, G. M. (2020). Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 395(10225), 689-697. https://doi.org/10.1016/S0140-6736(20)30260-9

5. Yan, S., Sun, H., Bu, X., & Wan, G. (2020). New strategy for COVID-19: an evolutionary role for RGD motif in SARS-CoV-2 and potential inhibitors for virus infection. Frontiers in Pharmacology, 11, 912. https://doi.org/10.3389/fphar.2020.00912

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3