Inhibitory effect of selenium nanoparticles on the biofilm formation of multidrug-resistant Acinetobacter baumannii

Author:

Šmitran AleksandraORCID,Luković BojanaORCID,Božić LjiljanaORCID,Golić BojanORCID,Gajić InaORCID

Abstract

Background/Aim: Treatment of infections caused by biofilm-producing multidrug-resistant (MDR) pathogens represents a huge global problem due to primary antimicrobial multi-resistance enhanced by reduced penetration of antibiotics in the biofilm-embedded bacteria. The aim of this study was to determine the capacity of biofilm production among MDR Acine-tobacter baumannii (A. baumannii) isolates obtained from different clinical specimens and to evaluate the inhibitory effect of selenium nanoparticles (SeNPs) coated with cationic polymer cetyltrimethylammonium bromide (CTAB) on the biofilm formation. Methods: Antimicrobial effect of antibiotics (meropenem, imipenem, gentamicin, amikacin, ciprofloxacin, levofloxacin and trimethoprim-sulfa-methoxazole) was determined by disk-diffusion assay, while sensitivity to colistin was determined with E test. All 60 isolates were tested on biofilm production in microtiter plates with crystal violet dye. Minimal biofilm inhib-itory concentration (MBIC) of SeNPs was tested in order to prevent biofilm formation in microtiter plates. Results: All tested clinical isolates were classified as MDR (n = 60) and extensively drug-resistant (XDR, n = 60). Out of the total 60 isolates, 55 isolates (92 %) showed the ability for biofilm formation, with the majority of them classified as strong (42 %) and moderate (42 %) biofilm producers. MBIC values of SeNPs for 55 biofilm-producing isolates ranged from 0.07 to 1.25 mg/mL. Strong biofilm producers had statistically higher MBIC (0.15 mg/mL) in correlation to other biofilm-producing isolates (0.07 mg/ mL). There was no correlation between invasiveness of isolates with biofilm production and MBIC values. Conclusion: Presented results are very promising and interesting especially in nanotechnology and medical fields, while SeNPs with the addition of cationic surfactant inhibit biofilm formation of MDR A. baumannii clinical isolates.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3