Analysis of cancer-specific survival in patients with metastatic colorectal cancer: A evidence-based medicine study

Author:

Zhou Yin-Jie,Tan Zhi-E,Zhuang Wei-Da,Xu Xin-Hua

Abstract

BACKGROUND Metastatic colorectal cancer (mCRC) is a common malignancy whose treatment has been a clinical challenge. Cancer-specific survival (CSS) plays a crucial role in assessing patient prognosis and treatment outcomes. However, there is still limited research on the factors affecting CSS in mCRC patients and their correlation. AIM To predict CSS, we developed a new nomogram model and risk grading system to classify risk levels in patients with mCRC. METHODS Data were extracted from the United States Surveillance, Epidemiology, and End Results database from 2018 to 2023. All eligible patients were randomly divided into a training cohort and a validation cohort. The Cox proportional hazards model was used to investigate the independent risk factors for CSS. A new nomogram model was developed to predict CSS and was evaluated through internal and external validation. RESULTS A multivariate Cox proportional risk model was used to identify independent risk factors for CSS. Then, new CSS columns were developed based on these factors. The consistency index (C-index) of the histogram was 0.718 (95%CI: 0.712-0.725), and that of the validation cohort was 0.722 (95%CI: 0.711-0.732), indicating good discrimination ability and better performance than tumor-node-metastasis staging (C-index: 0.712-0.732). For the training set, 0.533, 95%CI: 0.525-0.540; for the verification set, 0.524, 95%CI: 0.513-0.535. The calibration map and clinical decision curve showed good agreement and good potential clinical validity. The risk grading system divided all patients into three groups, and the Kaplan-Meier curve showed good stratification and differentiation of CSS between different groups. The median CSS times in the low-risk, medium-risk, and high-risk groups were 36 months (95%CI: 34.987-37.013), 18 months (95%CI: 17.273-18.727), and 5 months (95%CI: 4.503-5.497), respectively. CONCLUSION Our study developed a new nomogram model to predict CSS in patients with synchronous mCRC. In addition, the risk-grading system helps to accurately assess patient prognosis and guide treatment.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3