WAVE ATTENUATION IN MANGROVE FORESTS; FIELD DATA OBTAINED IN TRANG, THAILAND

Author:

Horstman Erik,Dohmen-Janssen Marjolein,Narra Pedro,Van den Berg Niels-Jasper,Siemerink Martijn,Balke Thorsten,Bouma Tjeerd,Hulscher Suzanne

Abstract

Mangroves thrive in sheltered intertidal areas in the tropics and sub-tropics. Due to this position at the interface between land and sea, mangroves play an important role in the attenuation of waves. Dissipation of wave energy in mangrove forests is an interesting feature from the viewpoint of coastal protection. Nevertheless, field data are sparse and modeling attempts reveal the need for additional data. This paper presents the results of an extensive field campaign, lasting 6 months, in mangroves along the Andaman coast of Trang Province in southern Thailand. Wave attenuation has been studied along two contrasting transects with different elevation and vegetation characteristics and different orientations towards the Andaman Sea. Along the Kantang transect, which is mostly exposed to swell waves, vegetation densities increased from 4.5 to 9.3 volume-‰ along the transect and on average 63% of the incident wave energy was attenuated over a distance of 246 m. Along the Palian transect, mostly exposed to sea waves instead, vegetation increased from 4.3 to 19 volume-‰ and 72% of the incident wave energy was attenuated over this 98 m transect. It was found that standardized wave attenuation correlates well with incident wave energy, when attenuation is analyzed per vegetation zone. Energy reduction rates of these zones, defined by the gradient of the correlations between the standardized wave attenuation and incident wave energy, are found to increase significantly with vegetation density. Consistently, wave reduction rates, expressing the gradient of the correlation between wave height reduction and incident wave heights, are found to be 0.001-0.014 for the study sites and also show a significant and increasing trend with vegetation densities.

Publisher

Coastal Engineering Research Council

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3