A New Approach to Hydrogen Sulfide Removal

Author:

Yasemin Yildiz Yasemin Yildiz

Abstract

Many separation processes are used to capture of hydrogen sulfide. Which of these techniques to choose depends on the location of the gas. Conventional gas cleaning processes have significant disadvantages such as considerable energy, maintenance costs and environmental concerns. Compared to conventional processes, membranes are light and compact and have a lower environmental impact, higher energy efficiency and ease of use. Although some rubber and glassy polymer membranes have been used for gas separation, there is an opportunity to reach a much larger potential market with newer and better membranes. In this study, H2S was captured with copper chloride in the polymeric membrane. Copper chloride was added to the polymeric membrane by mechanical mixing. The present study had two main objectives. First, a water-based membrane was prepared, and its characterization was done. Second, a pilot experimental apparatus was built for hydrogen desulfurization. Next, the capture of hydrogen sulfide with the membrane was tested in a pilot experimental apparatus. This study highlights that a new model membrane can utilize the hydrogen sulfur capture performance. FeS, iron (II) sulfide, and dilute HCl were used to obtain hydrogen sulfide in this study. The property of the membrane to hold H2S gas was examined with the amount of gas released by passing the H2S gas through the membrane. SEM-EDS analysis confirmed the accumulation of copper and H2S on the membrane surface. Also, no clogging and contamination problems were observed. The membrane retains its hydrophilic property even after use. The results obtained in the experimental study showed that the newly produced membrane captured 100 percent of H2S. The main object in this study, a new approach to H2S capture. The new copper loaden membrane tested in this study has successfully removed H2S and is expected to be a promising alternative to conventional desulphurization processes.

Publisher

Chemical Society of Pakistan

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3