Author:
Al-Gburi Ahmed Jamal Abdullah,Zakaria Zahriladha,Ibrahim Imran Mohd,Aswir Rahmi S.,Alam Syah
Abstract
This paper outlines the design and the implementation of a planar microwave resonator sensor for sensing application using the perturbation concept in which the dielectric characteristics of the resonator influence the quality factor (QF) and the resonance frequency. The designed sensor is fabricated using Roger 5880, and it is operating at 2.27 GHz in ranges of 1-3 GHz for testing solid materials. In addition, applying a specific experimental methodology, practical material is used as material samples such as those in Roger 5880, Roger 4350, and FR4. To investigate the microwave resonator sensor performance, an equivalent circuit model (ECM) is introduced. The proposed sensor has achieved a narrow bandwidth and high QF value of 240 at an operating frequency of 2.27GHz. Besides, the sensitivity and accuracy of the sensor is more than 80%, which makes this sensor an excellent solution to characterize the material, especially in discovering the material characteristics and quality.
Subject
Electrical and Electronic Engineering,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献